
Procedural Tools Example: Open World Manager

For one of my prior jobs I created this complex tool and I will explain it in the following. The
underlying pipeline was a procedural world generation, where we would create hundreds of
configuration files. The most basic type would define what objects are placed under certain
circumstances, the configuration object layer on top would define Sub Biomes (so to say group
the objects), then there would be biomes (which would group the Sub Biomes) and in the end
maps, which are collections of biomes. This workflow would allow numerous people to work
together at the same time, setting up the biomes, painting them out (size, density, growth and
type) without having to think what should be placed or how many. But it came with one big
downside: a huge amount of setup overhead and the connected complexity to manage it.

The tool I’m going to present here had the following requirements:
- know about all setup files without the user pointing it to it
- search through all files based on numerous criteria
- add, remove or create setup files
- multi-object edit those setup files
- check for sanity of those setup files
- full perforce support

Along the way a stretch goal appeared that overall fit logically quite well into the tool, even
though it was quite different from the remaining functionality: placing VFX and Audio in the
world. Here are the major requirements for this sub-tool:

- place audio and particle system based on the properties of the placed mesh, e.g. falling
leaves VFX with every tree of a certain size

- avoid large quantities of actors
- allow for controlled spacing between audio and VFX emitters, e.g. every 100m one

emitter
- communicate the placed objects information about the mesh, type of tree or size
- allow for manual placement of the audio / VFX emitter, e.g. bird audio sound on top of

the crown or ant VFX emitter on the bottom of the grass

Here are some general thoughts when I got to know about all those requirements:

Due to all the different functions, I chose a tabbed layout. It allows for good categorisation and is
very flexible in case more needs to be added. There will be a lot of buttons involved, color
coding them is an excellent way to guide the users’ eye. I chose the following concept:

- blue: chosen tab highlight
- green: non-destructive action
- red: destructive action
- pink: lengthy non-destructive actions
- white: inactive tabs and support / setup buttons

To avoid lots of scrolling through the lists, I added wherever I saw fit auto scrolling functions.

Such a large tool will have an incredible amount of potential errors. So to make the user aware
of those more conveniently, I wanted to add its own console, including export and filtering
functionality to help the Tech Art department to track down issues.

Adding new meshes to the system
This section allowed for selection of any mesh in the content browser to be able to assign it
conveniently to any biome setup. ‘Faulty’ setup like missing setup, duplicate categories or 0%
probability would be highlighted and auto-scroll was added.

Searching for existent meshes
Search functionality would allow for any type of property to be looked for. The found setup files
could then be highlighted in the content browser or deleted in bulk as well as moved to a
different biome.

Biome Values
The values tab allows for checking any setup of a settings file. Every properties file had three
different masks, one for its growth (is it getting scattered?), scale (what size should the
scattered object have?) and alternative (should it be a dry version of the same biome or maybe
snowy?).

Due to the nature of the system, there were a lot of duplicate properties (different masks
depending on the same noise settings for example). This tool merged them into one entry but
when set, would always override every similarly named entry altogether, avoiding lots of human
error in the process.

Biome Property Controles
This area allows for interacting with existent / new parameters for any singular or set of settings
objects, allowing for quick multi-object-editing which would otherwise be not as convenient.

Biome Sanity Checker
Since the whole system depends on massive amounts of properties which by default would
need to be added manually, this tool points out exactly which ones are missing. Naming was the
most crucial part, so it would not only point out missing properties but excess ones as well.
Maybe there was just a typo.

Biome Sanity Settings
The biome sanity settings contained all the naming parameters, important settings and any
other general logic for the system to make sure it exists.

Creating appended components
The idea was to set up differently spaced object grids, where based on the properties defined in
the optimisation and audio settings, the user could define that, e.g. every 10 meters there would
be a bird and every 50 meters the bird sound. This was Implemented in a very lightweight way
with a kd-tree in python, easily allowing point clouds of 20 million plus in around a second of
computational time.

A grid had not only a name but could be assigned Niagara systems as well as AK Events (this
would accept any type of assets. Supported assets are highlighted green). Every of those
Objects could be assigned numerous parameters. In this example here, the TreeSize and the
TreeType. In the audio settings, it is defined that a tree of 10m would be considered ‘Medium’
and that would be passed to the AK Event to choose the correct sound. The distribution of those
objects is determined by the chosen setup, as shown in the bottom with Map, Biome, Subbiome
etc. ‘To Point cloud’ would convert the current setup into a debug point cloud and visualize it.
In the end those components would have a secondary grid that would define the bounds of the
actor and would automatically add the components. For example every 10 meters there’s a bird
sitting on a tree. If the actor has a grid size of 100m, then 10 x 10 niagara components would
then be added to it.

Debug Settings
In order to have a clear idea about the spacing, a debug view was implemented. This would
draw debug shapes in the viewport to showcase what that seed and grid size would look like

based on the provided meshes.

The preview result would look like this. The filtered instance would be highlighted in the viewport
and could be adjusted to the user content.

Console
The console shows a colored frame based on the most critical type of error that occurred.
Filtering and clearing allowed for changing the amount of visible entries, export would create a
text file. When the tool would be closed or crashed, this log would be sent to the UE5 internal
log.

Help
The help button leads directly to the Confluence documentation.

Structure

The overall UI consists of more than 30 sub-widgets and more than 100 structs and data asset
types to allow for a very much customisable experience. This tool is 60% Blueprint, 30% C++
and 10% Python. It ended up having more than 20 pages of documentation and allowed for
15-20 people to create an open world simultaneously without much training time. Overall time to
create including lots of feedback was around 3 months.

There’s an incredible amount of things that were not mentioned due to the sheer size of the
overall tool. If you have any more questions, I’ml be happy to answer!

